

3rd Integrated CNS Technologies Conference & Workshop

General Aviation Aircraft Data Communications Analysis Using a Web-Based Tool

Tom Mulkerin – Mulkerin Associates Inc. Mike Zernic – Glenn Research Center

May 21, 2003

Outline

- Background
- SATS communications requirements analysis process
- Future Aviation Subnetwork Traffic Emulator for CNS (FASTE-CNS) tool
- SATS communications analysis using FASTE-CNS
- Summary

Background

- Background: The Small Aircraft Transportation System (SATS) program proposed using an Airborne Internet (AI) for aircraft data communications.
- Problem: Determine the communications load that the AI needed to support.
 - Analysis to determine the AI load was performed using spreadsheet models.
 - First, looked at the communications needs for a single aircraft.
 - Then, looked at the communications load within a 50 nm radius of a SATS airfield. Assumed 100 aircraft in the region.
- GRC's FASTE-CNS lets a researcher perform the same analysis via the Internet using a browser.

SATS AI Analysis Process

Operational Services (based on Operational Concepts)

Entity and services relationships Reference Model

Services allocated to system entities

Sta	ate	Purpose	Functions	A/C 1	A/C 2	Int	Surv	NAV	FSS	NWS	ATM Sys	Airport
	2005	Provide data for tracking aircraft on the ground. Provide data for tracking an aircraft enroute Support safe separation between participating traffic and airspace.	Provide data to ensure proper separation to avoid potential hazards and collisions. Provide data to support VFR and IFR traffic separation. Provide data to monitor flight progress.	x			x					

Information Exchange Data Objects allocated by service / functional processes (data flows)

State	Purpose	Functions	FPU	wx	AS	МС	NAV	ASI	PE	PIE
2005	Provide data for tracking aircraft on the ground. Provide data for tracking an aircraft enroute	Provide data to ensure proper separation to avoid potential hazards and collisions. Provide data to support VFR and IFR traffic separation.			x					
	Support safe separation between participating traffic and airspace.	Provide data to monitor flight progress.								

Information Exchange Needs (communications requirements)

Information Exchange - (IE Object)	Type: G/A
Airspace Situation (AS)	Integrity (Error Rate): High
	Information Unit Size (Min, Max, Avg): 0.2 Kb, 13 Kb, 11 Kb
	Frequency of Occurrence: 5 seconds
Applicable Interface: (Entity-to-Entity)	Acceptable Delay: 5 seconds
E	Authentication: No
	Priority: Medium
	Retransmission Required: No
	Suitable for Addressed Communications: No
	Suitable for Broadcast: Yes
	Suitable for Multicast: Yes

+ Loading

What is FASTE-CNS?

- GRC dynamic communications estimating tool
- Provides a means to define and assess the communications traffic loading associated with aeronautical related applications.
- Accessible via the Internet
- Supports collaborative research

FASTE-CNS System Architecture

Generic Loading Analysis

Process Modeled by FASTE-CNS

AI Objects = Application Message Sets

SATS analysis process defined information exchange objects needed to perform the operational service functions. Objects equate to message sets in our FASTE-CNS analysis.

Ref#	SATS Information Exchange Object	Description of Process/Data
1	Flight Planning and Use (FPU)	Submission and processing of original or revised flight plans.
2	Weather (WX)	Collection and exchange of weather data both forecast and current (FIS-B like)
3	Airspace Situation (AS)	Information to enable a common situational awareness (ADS-B /TIS-B like).
4	Maneuver & Control (MC)	Near real time exchange of data to direct or implement the maneuvering of an aircraft (CPDLC like).
5	Navigation Information (NAV)	Information to provide airborne and surface navigation guidance.
6	Aviation System Information (ASI)	Information regarding the current status, use or readiness of the system entities.
7	Pilot/Aircraft Information Exchange (PAE)	Pilot-to-pilot or aircraft-to-aircraft exchange of flight information.
8	Aircraft & Travel (AT)	Exchange of aircraft status and other travel related information.
9	Tropospheric Airborne Meteorological Data Reporting (TAMDAR)	Meteorological conditions, including moisture, temperature and winds gathered by aircraft sensors.

Weather Message Set

Communications Media

- Media used in SATS AI was called VDL Mode SATS.
- 2 parameters must be entered for communications media.
 - Range of the radio in miles: 200
 - Capacity of the media in the number of Kbps that a single frequency can support: 19.2 Kbps.

Communications Profile

FASTE - CNS

Message Set Media Comm Profile Load/Freq Calc User Services

Home Help Tech Support Logout
User Services

Open / Edit Comm Profile

Creator: Wendell Craig

Email Id: wendell.craig@mulkerin.com

Comm Profile:

GA Aircraft (with TAMDAR) - 2010 (Private)

Description:

The data communications profile for a general aviation aircraft in 2010. Some of the datalink capabilities will have been developed 🔼 as part of the Airborne Internet concept.

Message Set		Media	Delete
Flight Planning & Use (FPU) SATS Al (Private)	•	VDL SATS (Private)	
Maneuver & Ctrl (MC) SATS Al (Private)		VDL SATS (Private)	
Aviation Sys Info (ASI) SATS AI (Private)	•	VDL SATS (Private)	
Aircraft & Travel (AT) SATS AI (Private)	•	VDL SATS (Private)	
Pilot/Alrcraft Info Exch (PAE) SATS Al (Private)		VDL SATS (Private)	
Airspace Situation (AS) SATS AI (Private)	\blacksquare	VDL SATS (Private)	
Navigation Information (NAV) SATS AI AC (Private)		VDL SATS (Private)	
Weather (WX) SATS AI - A/C (Private)	_	VDL SATS (Private)	
TAMDAR SATS AI (Private)	V	VDL SATS (Private)	
	•		

Communications Profile Report

Media Type : All

Adding Aircraft Density to Analysis

- FASTE-CNS assesses the communications impact of multiple aircraft operating in the same geographic region.
- SATS analysis examined the communications load generated by 100 aircraft within 50 miles of a SATS AI equipped airfield.
- **■** Three communications profiles used.
 - Two for aircraft. Identical except one contained TAMDAR message set.
 - ◆ 25 aircraft with TAMDAR message set
 - **♦** 75 aircraft without TAMDAR message set
 - Ground station communications profile used for all message sets broadcast from the ground.

Define Region

Assigning Aircraft to Region

AI Communications Load

Summary

- FASTE-CNS provides an Internet accessible capability for modeling aviation related communications.
- **FASTE-CNS** can be used to answer these questions:
 - What is the communications traffic load (by media) that a single aircraft would experience?
 - What is the communications load (by media) that would occur in a geographic region populated by multiple aircraft with different communications profiles?
 - What is the number of frequencies for each media needed to support the communications load within the region?

Contact

Tom Mulkerin

Mulkerin Associates Inc.
7405 Alban Station Ct., Suite B-201
Springfield, VA 22150-2318
(703) 644-5660
Tom.Mulkerin@Mulkerin.com

Mike Zernic

NASA Glenn Research Center 21000 Brookpark Road, Mail Stop 54-6 Cleveland, OH 44135 (216) 433-5286 Michael.J.Zernic@nasa.gov